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Abstract:

Fast and accurate methods to compute the mutual coupling between elements and with a �nite ground plane are

presented in this paper. The initial formulation is based on the Method of Moments (MoM). The HARP software

presented here accelerates the MoM solution by using a combination of the Macro Basis Function (MBF) approach with

an interpolatory technique. After that, those MBFs, which correspond to an in�nite ground plane solution, are used to

describe the interactions of the array with a �nite ground plane lying on a semi-in�nite soil. The methods are validated

here for the SKA Log Periodic antenna (SKALA), under study for the Square Kilometer Array (SKA). The patterns are

compared here with results obtained with the commercial software FEKO.

Résumé:

Cet article présente deux méthodes permettant de tenir compte du couplage mutuel inter-éléments ainsi qu'avec le plan

de masse �ni dans les réseaux d'antennes. La formulation initiale est basée sur la Méthode des Moments. Celle-ci est

accélérée grâce à une combinaison de la méthode des Macro fonctions de base (MBF) avec une technique interpolatoire

dans le software baptisé HARP. Ces MBFs, calculées sous la condition d'un plan de masse in�ni, sont utilisées pour

caractériser les interactions avec un plan de masse �ni lui-même posé sur un sol in�ni. Les méthodes sont ensuite

appliquées à l'antenne SKALA (SKA Log Periodic antenna) du radiotélescope Square Kilometer Array (SKA). Les

diagrammes de rayonnement sont ensuite validés à l'aide des résultats obtenus avec le software commercial FEKO.

1 Introduction

The SKA (Square Kilometer Array) [1] represents the next generation of radio telescopes. It aims to survey
the sky much faster and in a more accurate way than any other previous system. Therefore, the SKA will
collect information over more than a square kilometer area. This project, in which more than 100 companies
and research institutions from di�erent countries cooperate, represents a true challenge for engineers in many
areas such as digital hardware, signal processing, antenna design and array simulation. This radio telescope
aims to achieve an unprecedented sensitivity by using thousands of dishes and up to a million of low-frequency
antennas. The latter will form many base stations appearing as a collection of radio telescopes. The main tar-
geted cosmology experiments are the Epoch of Reionization (EoR) and the Cosmic Dawn (CD) [2]. The SKA
low-frequency array is composed of base stations containing each 256 SKA Log-periodic Antennas (SKALA [3]).
The frequency band of this array lies between 50 MHz and 350MHz. A base station using the fourth version of
the SKALA antenna has already been deployed in Australia and is currently under test. The deserts of South
Africa and Australia have been designated for the SKA location in order to bene�t from a minimum radio
interference.

In order to perform the best calibration, radio-astronomers need accurate Embedded Element Patterns (EEP),
i.e. the radiation pattern of each individual element assuming the other antennas are passively terminated.
Indeed, since SKA-low is a phased array and given that the embedded element patterns are not the same, the
shape of the beam changes rapidly as the array is scanned. Small changes in the shape of the beam are not nec-
essarily an issue, since some imaging algorithms can cater for di�erent patterns at the level of di�erent stations.
Though, since high dynamic range is targeted, those small di�erences in array patterns need to be known very
accurately. Regarding the sidelobes, things are even more crucial because non-regular arrays produce relatively
high sidelobes and the impact of mutual coupling (i.e. of varying embedded element patterns) is actually much
higher in the sidelobes. Hence, if one wants to perform nulling of far-out interferrers [4], the accurate knowledge
of embedded element patterns is even more crucial.
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The mutual coupling and the ground plane �niteness strongly impact the EEPs. In order to accurately predict
these patterns, full wave simulations such as those obtained with the Method of Moments [5] need to be carried
out. When considering large irregular arrays, full wave simulations using commercial software is time consuming
and requires a lot of memory. This issue has been tackled for decades and two categories of methods appear.
The �rst category represents the iterative methods based on Multipoles [6]. In those methods, a new simulation
is needed every time the excitation port changes and for every change of the antennas positions. Moreover, con-
dition number issues can appear due to �ne-mesh details. The other category contains the non-iterative solvers.
These methods are based on the assumption that the current distribution on the antennas can be decomposed
into a limited number of current distributions. In this category, the Macro Basis Function [7] technique allows
to solve smaller systems of equations. Besides, fast methods have been developed to compute the interactions
between MBFs [8], [9], [10]. However, when considering a �nite ground plane, the interaction of the MBFs with
the latter become prohibitive. The inhomogeneous plane wave algorithm can be used to e�ciently perform the
interactions between scatterers [12]. In this spectral approach, the number of plane waves required to compute
the interactions greatly decreases with increasing distance between the scatterers.

In this paper, a software named HARP [13] which e�ciently handles the mutual coupling is presented. It
is based on a combination of the MBF method with an interpolatory technique [10]. The set of MBFs is built
assuming an in�nite ground plane. The �nite ground plane is then taken into account by computing the inter-
action with the MBFs using the inhomogeneous plane waves algorithm.

The remainder of the paper is organized as follows: Section 2 brie�y describes the main design parameters
of the SKALA antenna. Section 3 describes the HARP software and compares it in terms of performance to
the commercial software CST [11]. Section 4 describes how the �nite ground plane is taken into account using
inhomogeneous plane waves and Section 5 concludes the paper.

2 SKALA

The SKALA [3] shown in Figure 1 has been designed according to the observation of those predetermined
cosmology experiments: the Epoch of Reionization (EoR) and the Cosmic Dawn (CD). Based on these exper-
iments, the SKALA should present a smooth frequency response in order to detect faint signals. The antenna
has been designed to maximize the sensitivity of the SKA-low array on a 7:1 frequency band by optimizing
the e�ective area, minimizing the footprint and the receiver noise. In order to measure the foregrounds of the
EoR, the antenna also requires a low relative cross-polarization. An evaluation of the SKALA performance with
respect to the EoR and CD experiments is presented in [14]. According to the planned number of deployed
antennas (more than 3 million), the cost per element and the durability are also important parameters. Indeed,
the antenna should be able to last more then 30 years in the desert.

Figure 1 � Verison 2 of SKALA

3 HARP

The traditional Method of Moments (MoM) gives the current distribution on the antennas as the solution of
the following system of equations:

Zi = v (1)
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where Z is the MoM impedance matrix, v is a vector of excitation and i is the current distribution. Considering
Na antennas meshed with Ne basis functions, the solution has a complexity O((NaNe)

3
).

In the MBF formulation, one considers a Q matrix where each column corresponds to a MBF. Thanks to that
consideration, the solution, approximated as ir ' Q i, can be obtained by solving a reduced system of equations
[15]:

Zrir = vr (2)

where Zr = QHZQ and vr = QHv. Thanks to that formulation, the solution complexity is reduced to
O((NaNm)

3
) where Nm is the number of MBFs which is considerably smaller than the number of basis functions

Ne. As an example, the SKA-low stations can be simulated with Nm = 20 MBFs whereas every antenna needs
to be meshed with Ne = 1218 basis functions.
The blocks of the matrix Zr contain the interactions between MBFs. The far-�eld interaction between a MBF
S placed at the origin and a MBF T positionned at (rmn, α̂) can be approximated as:

ZappTS (rmn, α̂) ' −jωµ
−→
F α̂,∗
T,m ·

−→
F α̂
S,n

e−jkrmn

4πrmn
(3)

where
−→
F α̂,∗
T,m, and

−→
F α̂
S,n are the radiation patterns of the testing and source MBFs respectively, ∗ stands for the

complex conjugate, j is the wavenumber, ω is the angular frequency and µ is the free-space permeability.

The interpolatory method used in HARP was proposed in [10]. In this method, the blocks of the matrix
Zr are obtained as a combination of the far-�eld interaction in (3) and a matrix B represented by a harmonic-
polynomial model.
This matrix B can be obtained in three steps:

• Subtraction of the far-�eld expression for the interactions.

• Phase extraction

• Harmonic polynomial representation

Applying the two �rst steps gives:

BTS(rmn, α̂) =
ZrTS(rmn, α̂)− ZappTS (rmn, α̂)

e−jkrmn
(4)

The subtraction in the numerator represents the far-�eld subtraction and the division indicates the phase
correction step. Note that the method requires to compute the exact interactions on a limited number of points
positioned on a pre-de�ned polar-radial grid.
After applying the change of variable d = 1

r2 , (5) can be �tted with the following harmonic polynomial model:

BTS(rmn, α̂) =

P∑
p=−P

ejpα
Q∑
q=0

cpq d
q (5)

where, cpq are the coe�cients calculated in the least-squares sense, P is the Fourier Series order and Q is the
polynomial order.

Thanks to this interpolatory method, the interaction between MBFs can be fast computed as:

ZrTS(rmn, α̂) = ZappTS (rmn, α̂) +BTS(rmn, α̂) e−jkrmn (6)

Let us consider an array of 16 SKALA antennas on an in�nite ground plane. The radiation patterns obtained
with FEKO [20] and HARP are compared in Figure 3 considering a frequency of 145 MHz.
Some di�erences may appear in the sidelobes due to the di�erent modelling of the antenna in HARP and FEKO.
Moreover, the simulations are done using the fourth version of the SKALA antenna which is more complicated
than the previous versions. Considering now a SKA station composed of 256 version 2 SKALAs, the commercial
software needs more than 90 hours to simulate the station [13]. Moreover, a new simulation is required every
time the excitation port changes. The software HARP, however needs 3 hours of pre-processing per frequency.
Once the pre-processing is done, HARP only needs 0.5 min to simulate the station. If the antennas positions
are modi�ed, the simulation only takes another 0.5 min.
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Figure 2 � E-plane normalized radiation patterns of HARP vs FEKO

4 Finite ground plane

As stated before, not only the mutual coupling impacts the embedded element patterns but also the �nite
ground plane as shown in [16]. In this section, the inhomogeneous plane waves algorithm is used to describe the
interactions between the MBFs calculated thanks to the HARP software and the �nite ground plane. Using a
MoM formulation, the �nite ground plane is meshed with RWG basis functions [19]. It should be pointed out
that the MBFs are calculated assuming an in�nite ground plane. However, as will be shown in the results, this
assumption is consistent.
Let us consider a SKALA above a �nite ground lying itself upon a semi-in�nite soil. Using the mathematical
de�nitions and derivations in [17]. The �eld radiated by the antenna and tested by the �nite ground plane can
be written as:

−→
E (x, y, z) =

−jkη
(2π)

2

∫∫
Fp(kx, ky) · êp (1 + Γp)

e−j(kxx+kyy−kzz)

2jkz
Q dkxR dkyR (7)

where p is the polarization (TE or TM), η is the free space impedance, k is the wavenumber which is also the

norm of the wavevector
−→
k = (kx, ky, kz), Γp is the re�ection coe�cient due to the presence of the soil [18], Q

is a term allowing the integration only on real parts of kx and ky and Fp(kx, ky) is the radiation pattern of the
MBF expressed as:

Fp(kx, ky) =

M∑
m=0

εm

∫∫∫
V

−→
Jm(−→r ′) · êp ej(kxx

′+kyy
′−kzz′) dV (8)

where M is the number of elementary basis functions per MBF, εm is the weight of the mth basis functions

and
−→
Jm(−→r ′) is the mth basis function of the MBF situated in r′ = (x′, y′, z′). Once the tested �eld in (7) has

been computed, the current distribution on the ground plane is obtained by solving the following system of
equations:

Zgg ig = v (9)

where Zgg is the MoM impedance matrix of the ground, ig represents the equivalent currents of the ground
plane and v is the excitation vector resulting from the projection of (7) on the �nite ground basis functions.
Let us consider ρ the radial distance from the antenna. It should be pointed that computing the interactions
with the �nite ground plane is very e�cient when ρ is lower than the wavelength. However, the required number
of inhomogeneous plane waves becomes too high when ρ is increasing above a few wavelengths and the methods
looses its e�ciency. In a nutshell, it appears that the inhomogeneous plane wave algorithm is e�cient only when
considering a relatively low �eld of view de�ned as ρ/z′ where z′ is the distance between the antenna MBF and
the ground plane [21].
As a validation, let us consider a SKALA-2 antenna lying above a 8 m diameter �nite ground plane. The
frequency considered is 80 MHz. The results are consistent with those of FEKO and con�rm the antenna
in�nite ground plane currents assumption.
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Figure 3 � Radiation patterns of HARP vs FEKO considering one SKALA on a 8 m diameter ground plane

5 Conclusion

In this paper, we have described e�cient methods to compute the coupling between elements as well as with the
�nite ground plane. The results have been then validated thanks to the commercial software FEKO. However,
the inhomogeneous plane waves methods do not perform e�ciently when the �nite ground plane becomes
electrically large. Thus, the door is open to new methods handling large ground planes.
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